Uncommon Transformations of Methyl (1*S*,2*S*,3*R*,4*R*)-2,3-isopropylidenedioxy-5-iodomethyl-2-tetrahydrofurylacetate Initiated by Bases

N. A. Ivanova, Z. R. Valiullina, O. V. Shitikova, and M. S. Miftakhov

Institute of Organic Chemistry, Ufa Scientific Center, Russian Academy of Sciences, Ufa, 450054 Russia e-mail: bioreg@anrb.ru

Received October 13, 2005

Abstract—Methyl (1S,2S,3R,4R)-2,3-isopropylidenedioxy-5-iodomethyl-2-tetrahydrofurylacetate prepared in two stages from D-ribose acetonide underwent a series of uncommon transformations under the treatment with bases providing the following different products depending on the base applied: methyl 3-(5-acetyl-2,2-dimethyl-1,3-dioxol-4-yl)propionate (DBU), methyl 2,3-isopropylidenedioxy-7-oxabicyclo[2.2.1]heptane-6-carboxylate (t-BuOK), methyl {(5R)-2,2-dimethyl-5-[(2R)-oxiranyl]-1,3-dioxolan-4-yl)dene}propionate and methyl-(E)-3-{(4S,5R)-2,2-dimethyl-5-[(1R)-((2-oxiranyl))-1,3-dioxolan-4-yl}-2-propenoate ((t-BuOK) and LDA).

DOI: 10.1134/S1070428006110169

Application of sugars as chiral matrices in a directional synthesis of biologically active compounds is covered in a number of surveys and monographs [1–5]. In this study in order to synthesize optically active polyfunctional cyclopentanoids we investigated some reactions of iodoester III prepared from D-ribose acetonide (I) [6] via ester II [7, 8] occurring with assistance of basic reagents. We planned to perform a new way of

carbocyclization of compounds **III** or **IV** into structures **V** and **VI** hoping that under the action of strong deprotonating reagents a retro-Michael decomposition of compound **III** would be initiated providing enolate **VII** capable of repeated intramolecular Michael ring closure involving the more nucleophilic carboanion center and giving as a result cyclopentane derivative **VI**.

Reagents and conditions: a. Ph₃P=CHCO₂Me, PhH, 80°C, 2 h (90%); b. I₂, Ph₃P, Im, PhMe, 90°C, 1 h (80%); c. TsCl, Py, 20°C, 20 h (89%).

1702 IVANOVA et al.

Reagents and conditions: (a) 2.5 equiv. of DBU, PhH, 80° C, 2 h; (b) 1.5 equiv. of t-BuOK, THF, $0 \rightarrow 20^{\circ}$ C, 1 h (80%); (c) 2 equiv. of LDA, THF, -50° C, 2 h; 0° C, 0.5 h; 20° C, 1 h.

However this attempt failed. The stage of dehydroiodination of iodide **III** with DBU was found to take an abnormal direction. It turned out that the arising *exo*enol ether **V** under the conditions of reaction rearranged into a more stable derivative of 1,3-dioxol **VIII**. Analogs of this rearrangement were not reported.

On treating iodide **III** with t-BuOK in THF we obtained compounds **IX**-**XI**. As seen, t-BuOK converted iodoester **III** not into enol ester **V** but into a number of compounds resulting exclusively from the primary enolyzation of the methoxycarbonyl function. The formation of enol ester **X** is unexpected for it is less thermodynamically preferable than ester **XI**. The fraction of compound **X** was somewhat increased at replacing LDA for t-BuOK although the overall yield of compounds **IX** and **X** in this case was also rather moderate. Compound **X** is interesting for attempting intramolecular carbocyclization by Mukaiyma protocol [9]. The yield of this compound at treating with t-BuOK tosylate **IV** prepared under standard conditions attained $\sim 40\%$.

Thus we found that methyl (1*S*,2*S*,3*R*,4*R*)-2,3-iso-propylidenedioxy-5-iodomethyl-2-tetrahydrofurylacetate easily obtained from D-ribose when treated with DBU, *t*-BuOK, and LDA was converted into different in structure products of rearrangement, intramolecular cyclization and recyclization.

Therefore studying the reaction with basic reagents of methyl (1*S*,2*S*,3*R*,4*R*)-2,3-isopropylidenedioxy-5-iodomethyl-2-tetrahydrofurylacetate obtained from *D*-ribose acetonide we discovered a previously unknown rearrangement and a number of uncommon transformations leading to compounds promising as multipurpose chiral blocks.

EXPERIMENTAL

IR spectra were recorded on spectrophotometers UR-20 and Specord M-80 from films. NMR spectra were registered on a spectrometer Bruker AM-300 at operating frequencies 300.13 ($^1\mathrm{H}$) and 75.47 MHz ($^{13}\mathrm{C}$) from solutions in CDCl₃ ot CD₂Cl₂, as internal reference served the signals of solvents CDCl₃ (CD₂Cl₂) [δ_{H} 7.27 (5.31), δ_{C} 77.00 (53.86) ppm]. The reaction progress was monitored by TLC on Silufol plates, spots were visualized by 10% ethanol solution of anisaldehyde containing a little of sulfuric acid [10]. GLC analysis was carried out on a Shimadzu instrument equipped with a glass column 25 m long (sorbent OV-101).

Reaction of acetonide I with methoxycarbonyl-methylenetriphenylphosphorane. To a solution of 0.1 g (0.53 mmol) of acetonide I in 5 ml of anhydrous benzene was added by portions 0.26 g (0.79 mmol) of methoxycarbonylmethylenetriphenylphosphorane, and the

mixture was stirred at boiling till complete conversion of the initial acetonide (TLC monitoring, $2\,h$). On evaporating the solvent in a vacuum the residue was subjected to column chromatography on SiO_2 to obtain $0.016\,g$ (12.3%) of ester **IIa** and $0.10\,g$ (76.7%) of ester **IIb** (1:6, GLC) as oily fluids.

Methyl (2*R*,3*S*,4*R*,5*R*)-5-hydroxymethyl-3,4-isopropylidenedioxy-2-tetrahydrofurylacetate (IIa). R_f 0.33 (CHCl₃–MeOH, 97:3, average of 3 measurements), [α]_D²⁰+3.3° (*c* 1.0, CHCl₃). IR spectrum, v, cm⁻¹: 1730 (C=O), 3470 (OH). ¹H NMR spectrum (CD₂Cl₂), δ, ppm (*J*, Hz): 1.35 s (3H, Me), 1.50 s (3H, Me), 2.2 br.s (1H, OH), 2.67 d.d (1H, H^{2A}, ${}^3J_{2A,2'}$ 9.5, ${}^2J_{2A,2B}$ 13.5), 2.73 d.d (1H, H^{2B}, ${}^3J_{2B,2'}$ 3.5, ${}^2J_{2B,2A}$ 13.5), 3.61 d (2H, H^{1"}, ${}^3J_{1",5'}$ 6.9), 3.70 s (3H, OMe), 4.05 t (1H, H^{5'}, ${}^3J_{5',1''}$ 6.9), 4.35 d.d.d (1H, H^{2'}, ${}^3J_{2',2}$ 3.5, ${}^3J_{2',3'}$ 4.1, ${}^3J_{2',2A}$ 9.5), 4.60 d (1H, H^{4'}, ${}^3J_{4',3'}$ 6.1), 4.75 d.d (1H, H^{3'}, ${}^3J_{3',2'}$ 4.1, ${}^3J_{3',4'}$ 6.1). ¹³C NMR spectrum (CD₂Cl₂), δ, ppm: 25.06 (Me), 26.33 (Me), 34.67 (C²) 51.95 (OMe), 62.12 (C^{1"}), 77.28 (C^{2'}), 81.76 (C^{5'}), 82.94 (C^{3'}), 84.62 (C^{4'}), 112.89 (C^{i-Pr}), 171.95 (C^I).

Methyl (2S,3S,4R,5R)-5-hydroxymethyl-2,3isopropylidenedioxy-2-tetrahydrofurylacetate (IIb). R_f 0.49 (CHCl₃-MeOH, 97:3, average of 3 measurements), $[\alpha]_{D}^{20}$ –5.2° (c 1.0, CHCl₃). IR spectrum, v, cm⁻¹: 1745 (C=O), 3420 (OH). ¹H NMR spectrum (CDCl₃), δ , ppm (J, Hz): 1.34 s (3H, Me), 1.53 s (3H, Me), $2.62 \text{ d.d } (1\text{H}, \text{H}^{2A}, {}^{3}J_{2A,2'}6.7, {}^{2}J_{2A,2B}16.0), 2.86 \text{ d.d } (1\text{H},$ H^{2B} , ${}^{3}J_{2A,2'}$ 4.9, ${}^{2}J_{2A,2B}$ 16.0), 3.62 d.d (2H, $H^{I''A}$, ${}^{3}J_{I''A,5'}$ $3.9, {}^{2}J_{I''A,I''B}$ 11.7), 3.71 s (3H, OMe), 3.82 d.d (2H, H $^{I''B}$, ${}^{3}J_{1''B.5'}$ 3.9, ${}^{2}J_{1''A.1''B}$ 11.7), 4.08 q (1H, H⁵', ${}^{3}J_{5'.1''}$ 6.9), 4.42 d.d.d (1H, H²', ${}^{3}J_{2',2B} = {}^{3}J_{2',3'} = 4.9$, ${}^{3}J_{2',2A}$ 6.7), $4.53 \text{ d.d } (1\text{H}, \text{H}^{3'}, {}^{3}J_{3',2'}4.9, {}^{3}J_{3',4'}6.7), 4.74 \text{ d.d } (1\text{H}, \text{H}^{4'},$ ${}^{3}J_{4'5'}$ 3.9, ${}^{3}J_{4'3'}$ 6.7). ${}^{13}C$ NMR spectrum (CDCl₃), δ , ppm: 25.48 (Me), 26.43 (Me), 37.60 (C²), 51.95 (OMe), $62.67 (C^{1"}), 80.71 (C^{2'}), 81.60 (C^{5'}), 83.96 (C^{3'}), 84.77$ (C⁴), 114.40 (C^{i-Pr}), 171.30 (C^I). Found,%: C 53.88; H 7.52. C₁₁H₁₈O₆. Calculated, %: C 53.65; H 7.37.

Methyl (2R,3S,4R,5R)-3,4-isopropylidenedioxy-5-iodomethyl-2-tetrahydrofurylacetate (III). To a solution of 1.70 g (6.90 mmol) of alcohol IIb, 3.90 g (15.18 mmol) of Ph₃P, and 1.40 g (20.70 mmol) of imidazole in 30 ml of anhydrous toluene was added by portions at 95°C 3.50 g (13.80 mmol) of fine crystals of iodine. The reaction mixture was stirred for 1 h, diluted with an equal volume of ethyl acetate, washed with a saturated water solution of Na₂S₂O₃, and with H₂O. The organic layer was dried over Na₂SO₄, filtered, and concentrated in a vacuum, the residue was subjected to

column chromatography on SiO₂ (eluent petroleum ether). Yield 1.95 g (79.6%), colorless oily substance, R_f 0.36 (petroleum ether–ethyl acetate, 7:3), $[\alpha]_D^{20}$ –11.9° (c 1.0, CHCl₃). IR spectrum, ν , cm⁻¹: 1050 (C– \tilde{O}), 1745 (C=O). ¹H NMR spectrum (CDCl₃), δ , ppm (J, Hz): 1.35 s (3H, Me), 1.55 s (3H, Me), 2.62 d.d (1H, H^{2A} , ${}^{3}J_{2A,2'}$ 6.9, ${}^{2}J_{2A,2B}$ 15.9), 2.72 d.d (1H, H^{2B}, ${}^{3}J_{2A,2'}$ 5.6, ${}^{2}J_{2A,2B}$ 15.9), 3.25 d.d $(2H, H^{I''B}, {}^{3}J_{I''B,5'}, 5.3, {}^{2}J_{I''A,I''B}, 10.4), 3.28 \text{ d.d.} (2H, H^{I''A},$ ${}^{3}J_{1''A.5'}$ 4.4, ${}^{2}J_{1''A.1''B}$ 10.4), 3.71 s (3H, OMe), 3.91d.d (1H, $H^{5'}$, ${}^{3}J_{5'4'} = {}^{3}J_{5',1''A} = 4.4$, ${}^{3}J_{5',1''B}$ 5.3), 4.30 d.d.d (1H, $H^{2'}$, ${}^{3}J_{2',3'}$ 4.0. ${}^{3}J_{2',2B}$ 5.6, ${}^{3}J_{2',2A}$ 6.8), 4.5 d.d (1H, H^{3'}, ${}^{3}J_{3',2'}$ $4.0, {}^{3}J_{3',4'}$ 6.7), 4.71 d.d (1H, H^{4'}, ${}^{3}J_{4',5'}$ 4.4, ${}^{3}J_{4',3'}$ 6.7). ¹³C NMR spectrum (CDCl₃), δ , ppm: 7.11 (C¹"), 25.52 (Me), 27.34 (Me), 38.12 (C²) 51.84 (OMe), 80.91 (C²), $81.60 (C^5)$, $82.84 (C^3)$, $84.14 (C^4)$, $114.40 (C^{i-Pr})$, 171.30(C1). Found, %: C 37.28; H 4.62; I 35.40. C₁₁H₁₇IO₅. Calculated, %: C 37.10; H 4.81; I 35.63.

Methyl (2R,3S,4R,5R)-3,4-isopropylidenedioxy-5-p-toluenesulfonylmethyl-2-tetrahydrofurylacetate (IV). To a stirred at 0°C solution of 1 g (4.06 mmol) of alcohol **IIb** in 15 ml of anhydrous pyridine was added by portions 1.55 g (8.10 mmol) of TsCl. The reaction mixture was stirred at room temperature for 20 h (TLC monitoring), then it was poured into cold water, and reaction products were extracted into chloroform. The extract was dried over Na2SO4 and concentrated in a vacuum, the residue was subjected to column chromatography on SiO₂ to give 1.44 g (89%) of tosylate IV, R_f 0.22 (petroleum ether–ethylacetate, 7:3), $[\alpha]_D^{25}$ $+4.2^{\circ}$ (c 1.0, CHCl₃). IR spectrum, v, cm⁻¹: 1100 (C–O), 1190, 1370 (S=O), 1720, 1740 (C=O), 1600 (Ar). ¹H NMR spectrum (CD₂Cl₂), δ , ppm (*J*, Hz): 1.25 s (3H, Me), 1.48 s (3H, Me), 2.40 s (3H, Me^{Ar}) 2.52 t (1H, H^{2A}, ${}^{3}J_{2A}$ 2' 7.0, ${}^{2}J_{2A,2B}$ 15.9), 2.58 t (1H, H^{2B}, ${}^{3}J_{2B,2'}$ 5.6, ${}^{2}J_{2B,2A}$ 15.9), 3.62 s (3H, OMe), 4.05-4.07 m (3H, H⁵', 2H¹"), 4.23 d.d.d(1H, H²', ${}^{3}J_{2',3'}$ 4.2, ${}^{3}J_{2',2B}$ 5.6, ${}^{3}J_{2',2A}$ 7.0), 4.45 d.d (1H, $H^{3'}$, ${}^{3}J_{3',2'}$ 4.2, ${}^{3}J_{3',4'}$ 6.7), 4.51 d.d (1H, $H^{4'}$, ${}^{3}J_{4',1''}$ 3.5, $^{3}J_{4,'3'}$ 6.7), 7.36 m (3H, 2H^m, H^r), 7.76 d (2H, H^O, J 8.5). ¹³C NMR spectrum (CD₂Cl₂), δ , ppm: 21.69 (Me^{Ar}), 25.47 (Me), 27.39 (Me), 36.28 (C²), 51.91 (OMe), 69.91 $(C^{1''})$, 81.42 $(C^{2'})$, 81.73 $(C^{3'})$, 82.02 $(C^{5'})$, 84.45 $(C^{4'})$, 114.87 (C^{i-Pr}), 128.25 (C^{O}), 130.29 (C^{m}), 132.79 (C^{i}), 145.65 (C^{θ}), 170.87 (C^{I}). Found, %: C 52.08; H 5.77; S 7.91. C₁₈H₂₄O₉S. Calculated, %: C 51.91; H 5.81; S 7.70.

Reaction of iodide III with DBU. *a*. To a solution of 0.2 g (0.56 mmol) of iodide **III** in 5 ml of anhydrous benzene was added 0.11 g (0.70 mmol) of DBU, and the mixture was stirred at 80°C for 2 h. The solution was

1704 IVANOVA et al.

concentrated in a vacuum, the residue was subjected to column chromatography on SiO_2 (eluent CH_2Cl_2). We obtained 0.15 g of a mixture of iodide **III** and enol **V** in a ratio 2:1 (¹H NMR data).

b. Under similar conditions from $0.2~{\rm g}$ (0.56 mmol) of iodide **III** and $0.21~{\rm g}$ (1.40 mmol) of DBU in 5 ml of anhydrous benzene $0.09~{\rm g}$ (70%) of compound **VIII** was obtained.

Methyl (2*S*,3*S*,4*R*)-3,4-isopropylidenedioxy-5-methylene-2-tetrahydrofurylacetate (V). Colorless oily substance, R_f 0.36 (petroleum ether–ethylacetate, 7:3). ¹H NMR spectrum (CDCl₃), δ, ppm (*J*, Hz): 1.37 s (3H, Me), 1.47 s (3H, Me), 2.59 d.d (1H, H^{2A}, ³ $J_{2A,2'}$ 6.0, ² $J_{2A,2B}$ 11.8), 2.62 d.d (1H, H^{2B}, ³ $J_{2B,2'}$ 6.2, ² $J_{2B,2A}$ 11.8), 3.70 s (3H, OMe), 4.26 br.s (1H, H¹"A), 4.47 m (1H, H³'), 4.48 br.s (1H, H¹"B), 4.62 d.d.d (1H, H²', ³ $J_{2',3'}$ 2.0, ³ $J_{2',2A}$ 6.0, ³ $J_{2',2B}$ 6.2), 5.08 d (1H, H⁴', ³ $J_{4',3'}$ 6.0). ¹³C NMR spectrum (CDCl₃), δ, ppm: 25.63 (Me), 27.07 (Me), 37.90 (C¹"), 51.99 (OMe), 79.90 (C⁵), 82.47 (C³), 82.98 (C⁴), 86.46 (C¹'), 161.47 (C²), 113.54 (C^{1-P}r), 170.33 (C²").

Methyl 3-(5-acetyl-2,2-dimethyl-1,3-dioxol-4-yl)propanoate (VIII). Colorless oily substance, R_f 0.33 (benzene–ethyl acetate, 95:5, average of 3 measurements). IR spectrum, ν, cm⁻¹: 1050 (C–O), 1710, 1745 (C=O). ¹H NMR spectrum (CDCl₃), δ, ppm (J, Hz): 1.55 s (6H, Me), 2.23 s (3H, Me), 2.58 t (2H, H², $^3J_{2,3}$ 7.5), 2.95 t (2H, H³, $^3J_{3,2}$ 7.5), 3.70 s (3H, OMe). ¹³C NMR spectrum (CDCl₃), δ, ppm: 21.49 (C³), 25.45 (Me^{i-Pr} and C²'), 27.46 (Me^{i-Pr}), 30.88 (C²), 51.60 (OMe), 115.22 (C^{i-Pr}), 134.90 (C⁵'), 148.08 (C⁴'), 173.50 (C¹), 189.92 (C¹'). Found, %: C 57.65; H 7.28. C₁₁H₁₆O₅. Calculated, %: C 57.88; H 7.07.

Reaction of iodide III with *t***-BuOK.** To a solution of 0.2 g (0.56 mmol) of iodide **III** in 6 ml of anhydrous THF at 0°C under an argon atmosphere was added by portions 0.1 g (0.88 mmol) of *t*-BuOK. After stirring for 1 h at room temperature (TLC monitoring) the mixture was filtered and concentrated in a vacuum, the residue was subjected to column chromatography on SiO_2 (eluent benzene—ethyl acetate, 98:2 > 95:5). We obtained 0.07 g (54%) of compound **IX**, 0.01 g (8%) of enol **X**, and 0.01 g (8%) ester **XI**.

Methyl-2,3-isopropylidenedioxy-7-oxabicyclo-[2.2.1]heptane-6-carboxylate (IX). R_f 0.19 (benzene-ethyl acetate, 95:5, average of 3 measurements), $[\alpha]_D^{20}$ -29.9° (c 1.0, CHCl₃). IR spectrum, v, cm⁻¹: 1045, 1090 (C–O–C), 1730 (C=O). ¹H NMR spectrum (CDCl₃), δ,

ppm (J, Hz): 1.28 s (3H, Me), 1.47 s (3H, Me), 1.52 d.d (1H, H^{5endo}, ${}^2J_{5endo,5exo}$ 13.0, ${}^3J_{5endo,6endo}$ 9.1), 2.12 d.d.d (1H, H^{5exo}, ${}^3J_{5exo,4}$ 5.80, ${}^3J_{5exo,6}$ 9.1, ${}^2J_{5exo,5endo}$ 13.0), 2.41 d.d (1H, H^{6endo}, ${}^3J_{6endo,5exo}$ 4.8, ${}^3J_{6endo,5endo}$ 9.1), 3.72 s (3H, OMe), 4.23 d (1H, H^{2endo}, ${}^3J_{2endo,3endo}$ 9.5), 4.24 d (1H, H^{3endo}, ${}^3J_{3endo,2endo}$ 9.5), 4.67 s (1H, H¹). 13 C NMR spectrum (CDCl₃), δ , ppm: 25.15 (Me), 25.90 (Me), 27.86 (C⁵), 41.96 (C⁶), 52.41 (OMe), 78.70 (C⁴), 81.29 (C¹), 81.95 (C²), 82.24 (C³), 111.85 (C^{i-Pr}), 173.03 [C(=O)]. Found, %: C 58.48; H 6.62. C₁₁H₁₆O₅. Calculated, %: C 57.88; H 7.07.

Methyl- $\{(5R)-2,2-\text{dimethyl-5-}[(2R)-\text{oxiranyl}]-1,3$ dioxolan-4-ylidene}propionate (X). R_f 0.39 (benzene– ethyl acetate, 95:5, average of 3 measurements), $[\alpha]_0^{20}$ $+17^{\circ}$ (c 1.0, CHCl₃). IR spectrum, v, cm⁻¹: 985 (trans-C=C), 1060, 1080 (C-O), 1740 (C=O). 1H NMR spectrum (CD₂Cl₂), δ , ppm (*J*, Hz): 1.38 s (3H, Me), 1.50 s (3H, Me), 2.73 d.d (1H, $H^{2"A}$, ${}^2J_{2"A,2"B}$ 15.1, ${}^3J_{2"A",I}$ 2.5), 2.78 d.d (1H, H²" B , $^{2}J_{2"B,2"A}$ 15.1, $^{3}J_{2"B,I"}$ 3.8), 3.0 d.d.d (1H, H^I", ${}^{3}J_{I",5'}$ 6.3, ${}^{3}J_{I",2"B}$ 3.8, ${}^{3}J_{I",2"A}$ 2.5), 3.09 d.d.d (1H, H^{2A}, ${}^{2}J_{2A,2B}$ 15.8, ${}^{3}J_{2A,3}$ 7.0, ${}^{5}J_{2A,5'}$ 1.5), 3.15 d.d.d (1H, H^{2B}, ${}^{2}J_{2B,2A}$ 15.8, ${}^{3}J_{2B,3}$ 7.0, ${}^{5}J_{2B,5'}$ 1.5), 3.66 s (3H, OMe), 4.31 d.q (1H, H⁵', ${}^{3}J_{5',I''}$ 6.3, ${}^{5}J_{5',2A} = {}^{5}J_{5',2B} =$ $^{4}J_{5',3} = 1.5$), 4.50 d.d (1H, H³, $^{3}J_{3,2A} = ^{3}J_{3,2B}$ 7.0, $^{4}J_{3,5'}$ 1.5). 13 C NMR spectrum (CD₂Cl₂), δ , ppm: 25.63 (Me), 26.67 (Me), 30.96 (C²), 45.11 (C²"), 51.96 (OMe), 52.84 (C¹"), 76.56 (C⁵), 88.94 (C³), 113.32 (C^{i-Pr}), 152.06 (C^4) , 171.61 (C^1) . Found, %: C 58.20; H 7.25. $C_{11}H_{16}O_5$. Calculated, %: C 57.88; H 7.07.

Methyl-(E)-3- $\{(4S,5R)$ -2,2-dimethyl-5-[(1R)-(2oxiranyl)]-1,3-dioxolan-4-yl}-2-propenoate (XI). $R_f 0.30$ (benzene-ethylacetate, 95:5, average of 3 measurements), $[\alpha]_D^{20}$ –1.2° (c 0.9, CHCl₃). IR spectrum, v, cm⁻¹: 1035, 1070 (C–O), 1745 (C=O). ¹H NMR spectrum (CD_2Cl_2) , δ , ppm (*J*, Hz): 1.20 s (3H, Me), 1.35 s (3H, Me), 2.47 d.d (1H, H²"A, ${}^{3}J_{2"A,I"}$ 2.5, ${}^{2}J_{2"A,2"B}$ 5.0), 2.63 d.d (1H, H^{2"B}, ${}^{3}J_{2"B,I"}$ 4.0, ${}^{2}J_{2"B,2"A}$ 5.0), 2.68 d.d.d (1H, H^I", ${}^{3}J_{I",2"A}$ 2.5, ${}^{3}J_{I",2"B}$ 4.0, ${}^{3}J_{I",5'}$ 7.4), 3.55 s (3H, OMe), 3.64 d.d (1H, H⁵', ${}^{3}J_{5',4'}$ 6.8, ${}^{3}J_{5',1''}$ 7.4), 4.72 d.d $(1H, H^{4'}, {}^{4}J_{4',2} 1.7, {}^{3}J_{4',3} 5.0, {}^{3}J_{4',5'} 6.8)$. ¹³C NMR spectrum (CD_2Cl_2) , δ , ppm: 25.08 (Me), 27.49 (Me), 46.09 (C²"), $49.69 (C^{I''}), 51.69 (OMe), 76.71 (C^5), 79.08 (C^4), 110.10$ (C^{i-Pr}) , 122.78 (C^2) , 141.92 (C^3) , 166.17 (C^1) . Found, %: C 57.71; H 6.93. C₁₁H₁₆O₅. Calculated, %: C 57.88; H 7.07.

Reaction of iodide III with LDA. To a solution of 0.113 g (1.12 mmol) of i-Pr₂NH in 3 ml of anhydrous THF was added 0.66 ml (1.12 mmol) of 1.7 N solution of

BuLi at -10°C under an argon atmosphere. The reaction mixture was stirred for 0.5 h at -10°C, then it was cooled to -50° C, and a solution of 0.2 g (0.56 mmol) of iodide III in 3 ml of anhydrous THF was added dropwise. The mixture was stirred at -50°C for 2 h, at 0°C for 0.5 h, and 1 h at room temperature (TLC monitoring). On cooling the reaction mixture to -25°C 1 ml of saturated NH₄Cl solution was added, and the solution was concentrated in a vacuum. The product was extracted into ethyl acetate, the combined organic extracts were washed with a saturated NaCl solution, and dried over Na₂SO₄. On evaporating the solvent in a vacuum the residue was subjected to column chromatography on SiO₂ (eluent petroleum ether-ethyl acetate, 97:3 > 8:2) to isolate 0.016 g (12.5%) of compound **IX** and 0.02 g (15.6%) of enol X.

Reaction of tosylate IV with *t***-BuOK.** To a solution of 0.3 g (0.75 mmol) of tosylate **IV** in 7 ml of anhydrous THF was added by portions 0.11 g (0.97 mmol) of *t*-BuOK at 0°C in an argon atmosphere. The reaction mixture was stirred for 0.5 h at room temperature (TLC monitoring), filtered, the filtrate was concentrated, and the residue was subjected to column chromatography on SiO_2 (eluent petroleum ether—ethyl acetate, 95:5) to isolate 0.07 (40%) of enol **X** and 0.02 g (11%) of ester **XI**.

REFERENCES

- 1. Verheyden, J.P.H., Richardson, A.C., Bhat, R.S., Grant, B.D., Fitch, W.L., and Moffatt, J.G., *Pure Appl. Chem.*, 1978, vol. 50, p. 1363.
- Kochetkov, N.K., Sviridov, A.F., Ermolenko, M.S., Yashunskii, D.V., and Chizhov, O.S., Uglevody v sinteze prirodnykh soedinenii (Carbohydrates in Synthesis of Natural Compounds), Moscow: Nauka, 1984, p. 288.
- 3. Ferrier, R.J. and Middleton, S., *Chem. Rev.*, 1993, vol. 93, p. 2779.
- 4. Martinez-Grau, A., and Marco-Contelles, J., *Chem. Soc. Rev.*, 1998, vol. 27, p. 155.
- 5. Salari, B.S.F., Biboutou, R.K., and Bennett, S.M., *Tetrahedron*, 2002, vol. 56, vol. 6385.
- 6. Moon, H.R., Choi, W.J., Kim, H.O., Jeong, L.S., Jin, V.H., and Chu, C.K., *Tetrahedron: Asymmetry*, 2002, vol. 13, p. 1189.
- 7. Ohrui, H., Jones, G.H., Moffatt, J.G., Maddox, M. L., Christensen, A.T., and Byram, S.K., *J. Am. Chem. Soc.*, 1975, vol. 97, p. 4602.
- 8. Carstensen, E.V., Duyustee, H.I., Van der Marel, G.A., Van Boom, J.H., Nielsen, J., Overklee, H.S., and Overhand, M., *J. Carbohydr. Chem.*, 2003, vol. 22, p. 241.
- Mukaiyma, T. and Murakami, M., *Synthesis*, 1987, vol. 12, p. 1043.
- 10. Kirchner, J.G., *Thin-Layer Chromatography*, Perry, E.S., Ed., New York: Wiley, 1978, 2nd ed.